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ABSTRACT

Four series of structural models, consisting of 102 small machined
spherical shells, were tested to study the effect of unsupported shell
length on both their elastic and inelastic buckiing strength. The four
series consisted of models represenrting complete spheres, clamped
spherical segment models with included angles ranging from 5 to 300 deg,
and stiffened hemispherical models. The collapse pressure of the
complete spheres was adequately calculated using the empirical equation
ea;-lier developed at the Model Barcin. Whereas previous experiments on
spherical shells with clamped edges recorded in the literature show a
complete lack of repeatability, the results of the present models follow a
definite pattern. These tests demonstrate that the unsupported shell
length must be relatively short to provide an increase in strength of a

spherical segment over that of a complete sphere. They also demonstrate

that a small clamped spherical segment may be weaker than a longer
clamped segment. The experimental collapse strength of the stiffened
shells was in no case as great as would be expected for a machined
unstiffened shell of the same weight. Since these were rather exploratory
tests, however, they do not demonstrate that effective stiffening systems

cannot be developed.
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INTRODUCTION

The problem of the collapse strength of spherical shells under uniform
pressure has received considerable attention in recent years. This
attention is due in part to the introduction of missiles and other space-
craft, and in part to the academic interest which the problem arouses. 1

Despite considerable effort by various investigators, there are no
adequate design procedures for spherical sheus.z This is particularly
true for naval applications where relatively thick, deep spherical shells
are involved. The theoretical work carried ou. thus far is of little value
to the naval designer since the major effort has been directed toward the
elastic buckling of shallow thin caps. This orientation in theoretical
effort is due chiefly to the aeronautical application of this type of shell
structure. However, it often appears that work in this area is also pro-
moted by mathematical exploration of a problem somewhat more simple
than that of 2 deep or complete sphere.z Experimental investigations
have been considerably more limited than theoretical investigations. The
limited experimental studies have normaily involved shells much thinner
than those of interest to the naval designer, and lack of sufficient know-
ledge of the initial imperfections present in the test specimens makes it
impossible to obtain useful design guidance from the test results.

During the past two years, the David Taylor Model Basin has been

actively engaged in developing the necessary background for the design of

1 References are listed on page ¢3.
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spherical shells for use in underwater vehicles, Since recent emphasi;
has been placed on deep-depth applications such as TRIESTE, the strength
of relatively thick as well as thin spherical shells is being investigated,

A limited amount of theoretical work is being conducted, but the program
is primarily experimental. Test specimens are being machined as well
as manufactured according to feasible large-scale fabrication procedures.
The effects of initial imperfections, residual stresses, boundary con-
ditions, stiffening systems, and penetrations on elastic and inelastic
behavior and collapse strength are being studied.

This report summarizes the test results of four series of small
machined spherical models. These tests, which were conducted under the
Fundamental Research Program (S-R0il 01 01, Task 04Cl} and included
102 models, were designed to study the effect of unsupported shell length
on elastic and inelastic collapse strength of initially near-perfect spheri-
cal shells. The current heavy workload of high-priority projects pre-
clides conducting a complete analysis of the test results at this time.
However, publication of this preliminary analysis appears warranted in
view of the apparent lack of adequate experimental data in the literature
on the buckling strength of spherical shells. The general effects of
stiffening systems and initial departures from sphericity on collapse

strength are discussed on the basis of this preliminary analysis.
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HISTORICAL BACKGROUND
COMPLETE SPHERES

Timoshenko3

summarized the classical small-defection theory for the
elastic buckling of a complete sphere as first developed by Zoelly in 1915.
In this analysis it is assumed that buckling will occur at that pressure
which permits an equilibrium shape minutely removed from the perfectly

spherical deflected shape. The expression for this classical buckling

pressure p; may be given as

e {1
V31 - +2)
wiere E is Young's modulus,
h  is the shell thickness,
R is the radius to the midsurface ¢f the shell, and
v is Poisson's ratio.
Unfortunately, the very limited data available -prior to the current Mcdel
Basin program do not support the linear theory; elastic-buckling icads of
roughly one-fourth those predicted by Equation [1] were observed in
earlier tests recorded in the litex-amxe.z'4
Various investigators have attempted to explain this discrepancy by
introducing nonlinear shell equations. Von Kirmin and Tsien initially
introduced the nonlinear eguations and the associated postbucikling con-

figurations. They determined the minimum luad required to keep an

elastic shell ir the postduzcikie position of finite deformation and offered
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this minimum value as the ""lower" buckling load which could be exp;:c-l:ed
in an ordinary experiment. Friedrichs6 demonstrated that Von Kirman
and Tsien erred in placing certain restrictions on deformations. How-
ever, when Friedrichs removed the restrictions on deformations and

introduced a "boundary layer" concept, he was unable to obtain an equi-

librium load in the postbuckle shape. Following Friedrich's work, Tsien7

found that by introducing 2 new buckling concept, commonly referred to as
the "energy criterion of jump,' he could calculate postbuckling equilibri-
um loads.® This energy criterion assumes that:

1. the energy level must be the same before and after buckling, and

2. the geometric restraints of the loading device must be satisfied.
Although the theoretical predictions of Tsien"are in fairly good agreement
with the early test results, there is widespread belief that his minimum
theoretical pressures have no true significance. For instance, Tsies's
theory predicts buckling pressure to be a function of the size of the test
chamber; collapse is predicted to occur at a lower pressure in a large
test tank than in a small test tank, where the tank pressure falls off
appreciably during buckling. In practice, however, no differerice in buck-
ling pressure due to the size or energy of the system has been observed.

9

Recently, Thompson”’ has determired both theoretically and experi-

mentally that stable postbuckle states do exist for complete, "near-perfect"

* Unaware of Tsien's work due to the restricted exchange of scientific
informationduring World War II, Yoshimina and Uemura of the University
of Tokyo later developed a similar z2nergy criterion.8
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r spherical shells. His minimum pressure of the postbuckle path, obtained
theoretically by introducing a four-degree-of-freedom analysis, was

found to be 0.24 times the classical pressure. Furthermore, Thompson

also found that thi$ "minimum pressure' had no relationship with the

experimental buckling pressure,

2,4

The test specimens used in the earlier tests, the results of which

have been frequently compared to the theoretical buckling pressure for
initially perfect spheres, were formed from flat plates. Thus, although
little data are available, it can be assumed that these early specimens
had significant departures from sphericity, variations in thickness, and
residual stresses. Those specimens which were not complete spheres
alsc nhad adverse boundary conditions. Until very recently,?'10 however,
no attempt has been made to theoretically evaluate these effects on the
collapse strength of deep or complete spheres.

To clarify this rather large discrepancy between the classical buckling
pressure and the existing experimental data, the Model Basin recently

11,12 which

more closely fulfilled the assumptions of linear theory than accomplished

completed testa of two series of machined spherical shells

by the specimens tested in the earlier experiments. These tests demon-
strated the effects of initial departures from sphericity, together with the
noxrmally less serious effects of variations in thickness, residual stresses,

a .1 adverse boundary conditions. The collapse strength of these machined

shells was about two to four times greater than the collapse strength of the
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shells formed from flat pla':e.z’4 By achieving a maximum 0.9 ratio o;'
experimental collapse pressure to the collapse pressure obtained from
clascical theory these tests lend considerable support to the validity of
the small-deflection theory for initially perfect complete spheres, Based
on thes.e recent test results, an empirical design equation for machined
spheres was suggested which predicts collapse to occur at about 0.7 times
the classical pressure. For a Poisson's ratio of 0.3, this empirical

equation for the elastic buckling pressure p3 of near-perfect spheres may

be expressed as

Py = 0.84E (ﬁ%)z (2]
where the use of the outer radius R is dictated by simple load equﬁibrium.
Since the recent tests show that the discrepancy between the early
experiments and the classical small-deflection theory can be attributed to
the failure of the specimens to fulfill the rigid theoretical assumptions, it
appears particularly worthwhile to investigate the effects of initial
departures from sphericity on the elastic buckling strength of complete
spheres, Until very recently, no theoretical or experimental work had
been done in this area. However, Thompson9 has recently conducted an
"elementary study®™ of th_e theoretical behavior of a complete sphere with.
an initial departure from sphericity. Based on a middle surface imper-

fection of assumed shape and amplitude, he solved the nonlinear equations
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for the maximum buckling pressure. This type of theoretical approach
shows promise of producing the first valid theoretical analysis for
practical spheres and appears worthy of further investigation. Tests
have recently been conducted at the Model Basin to study the experimental
buckling pressure of mdchined shells with known local "'flat spots. w13

The collapse pressures of these "flat spot" specimens were adequately

calculated using a semi-empirical equation developed on the basis of the

results presented in this report.

Sanee A

Bijlaard,14 Gerard ,15 and Lunchick16 have developed solutions for

tac inelastic buckling of complet~ spheres. Each followed the same basic

ik

approach of applying a plasticity reduction factor to the classical linear

theory. Except for the use of different expressions for Poisson’s ratio in

tha plastic range, their solutions are identical. For a Poisson's ratio of

0.3 in the elastic region, Gerard's expression becomes

1.154 £:s Et (h)z ]
=1.154 T3 \AR 3
where Es is the secant modulus,
E, is the tangent modulus, and
Yo is Poisson's ratio in the plastic range.
Thus, if it i3 assumed that Poisson's ratio in the plastic range rernains at )

0.3, Gerard's expression becomes

2
h
P 7 1.2 \VELE, (-ﬁ) [4]
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Tests of machined aluminum spherical shells with ideal boundaries
which collapsed at stress levels above the elastic limit of the material are
also preaented in Reference 11. For each model tested, the plastic
buckling theories of References 14, 15, and 16 gave collapse pressures
higher than the corresponding experimental collapse pressures. The
collapse strength of those models which failed at stress levels above the
proportional limit were accurately calculated, however, using an empiri-
cal formula based on the observed collapse strength of the elastic models
(as estimated by Equation [2]) and a plasticity reduction factor similar to
that developed in existing theory. This empirical formula for the in-

elastic collapse pressure of near-perfect spheres may be expressed as

Py = 0.84 VESE; (g—j (5]

The secant and tangent modulus used in Equations (3} [4), and [5] are
derived from typical stress-strain curves of the material obtained from
tests of simple compression specimens, In Equations [3] and [4] it is
assumed, on the basis of thin shell theory, that the stress ¢, may be

calculated by

o -..?.B.. [6]

In Equation [5], the average stress which satisfies equilibrium con-

ditions for all thickmesses, Oave’ is used and may be calculated by

é
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In many cases the presence of residual stresses lowers the collapse

strength of spherical shells, 17 This is particularly true for those shells
whose theoretical elastic collapse strength is only slightly greater than
their inelastic collapse strength. Specifically, residual stresses normally
cause a lowering of the proportional limit o the material and an associ-
ated falling off of the secant and tangent modulus. Formulas [3], [4],

and [5] show that by reducing the secant and tangent modulus the collapse

T ve e t—— — o
— — v e w

Although it can be stated quali-

f strength is reduced for such shells,
: tatively that residual stresses have a detrimental effect on many spheri-
cal shells, there is no theory which may be used to quantitatively evaluate
! this effect. Furthermore, it is unlikely that a completely theoretical
approach to this problem will be satisfactory since the residual stresses
will probably often be present in some random, unpredictable pattern.

No significant work has been accomplished on the effects of pene-

trations and adverse boundary conditions on the collapse strength of

spherical shells. A method has been developed at the Model Basin for

designing penetrations and cylinder-hemisphere junctures for no rotation
and for a radial deflection equal to that of all other parts of the spherical
shell, 18 Thus, the effects of penetrations and boundary conditions on
For example, the

collapse pressure can be eliminated for ideal cases.

membrane boundary cylinders for hemispherical shells,u'lz'lg'zo the

10
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reinforcement for axisymmetric penetrations in spherical shell:r;,lg'26 a;xd
the reinforcement for viewing ports in spherical hulls for oceanographic
resea.rch21 have successfully been designed in this manner,

Since stability considerations control the design of spherical shells
required to resist hydrostatic pressure on the convex side, it is worth
investigating the possibility of increasing the structural efficiency of
these shells by introducing stiffening systems. Unfortunately, no the;ry '
is available for the buckling strength of stiffened spherical shells. HO\;V-
ever, considerable theoretical work has been done on the buckling of
clamped spherical segments, and this work is indirectly associated with
the local buckling of stiffened spherical shells. Experimental data on the
strength of stiffened spherical shells are lacking. Kloppel and J ungbluth4
were unsuccessful in their attempts to improve structural efficiency by
stiffening spherical shells, However, the Model Basin has recently
conducted tests which indicate that some advantages may possibly be
gained by stiffening welded HY-80 steel spherical shells. !’
SPHERICAL SEGMENTS WITH CLAMPED BOUNDARIES

The perfect complete sphere deforms uniformly under pressure, but the
spherical segment with clamped boundaries distorts axisymmetrically at
the initiation of the uniform pressure loading. Thus, nonlinear equatiouns

must be introduced in order to determine the elastic behavior of clamped

spherical segments.

11
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The nonlinear theory for the elastic buckling strength of near-perfect
shallow spherical segments with clamped edges under external hydro-
static pressure was first investigated by Feodosie\‘r22 in 1946. Since that
time, the problem has received considerable attention. The more recent

3 24 and ']'.‘lmrstox'x‘;r5 are particularly

work of Budiansky,z Weinitschke,
noteworthy since they are in good agreement with each other throughout
the range of shallow spherical segmenﬂ:s."t In contrast, the results of the

earlier studies based on nonlinear equations conducted by Feodc:s:siev,22

Kaplan and Fung,26 and several other investigator527'28'29 are generally

in disagreement with each other.
. 23 s 24 25 .

Although Budiansky,”” Weinitschke,”” and Thurston™ have inde-
pendently developed solutions for the elastic axisymmstric buckling of
shallow spherical segments which agree well with each other, there is
generally very poor agreement between their theoretical predictions and

st . 4,7,26,30 s as . .
existing experiments. This disagreement is normally attributed
to the presence of initial imperfections in the test specimens and to the
influence of the nonsymmetric buckling mode, neither of which are con-
sidered in these theories,23:24,25 The effect of initial imperfections in
the elastic axisymmetric buckling of shallew segments has been studied
31

by Chen”" and Budiansky. 23 Although both investigators have shown that

the presence of initial imperfections lowers the theoretical elastic

* A spherical segment is considered to be shallow when the ratio of its
height to its base radius is less than one-eighth.

12
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axisymmetric buckling pressure, the calculated reduction in buckling
pressure based on measured initial imperfection is not nearly enough to

23 Weinitschke32

produce even fair agreement with the experimental data.
recently presented a theory on the nonsymmetric buckling of spherical
segments at an NASA Symposium on Instability of Shell Structures. At
this symposium, Fung and Thurston and also Budiansky and Huang indi-
cated that they were workirg on the same problem. Although
Weinitschkeis theory is in fairly good agreement with existing experi-
ments, it differs considerably from the independent results which the
other investigators are currently obtaining.

Very little work has been conducted on the inelastic strength of
clamped spherical segments. By use of the theories of limit analysis,
Hodge3 3 derived the upper and lower bounds on the plastic collapse load
of a spherical segment. Roth3¢ studied the buckling of a spherical
segment of an elastic perfectly plastic material. The inelastic buckling
strength of a clamped spherical segment of strain-hardening material has
not been studied. No experimental data on the inelastic buckling strength
of clamped spherical segments can be found in the literature.

DESCRIPTION OF MODELS

The four series of models wer.: designed to study the effect of
unsupported shell length on collapse strength and consisted of the follow-
ing:

1. Series 5 consisted of four models representing complete spheres.

~-

13
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included angles ranging from 5 to 120 deg.

3. Series DSS consisted of eight 300-deg spherical segments with

clamped edges.

4. Series SSS consisted of 17 stiffened hemispherical shells.
Nine models in Series SSS had circumferential stiffeners only, four had
meridional stiffeners only, and four had both circumferential and meridi-

onal stiffeners.

Each series was designed to study both the elastic and inelastic buck-
ling strength of spherical shells. Thus, the ratios of shell thickness to
radius were selected to study relatively stable as well as unstable con-
figurations, Unfortunately, the thinnest shells in Series S and Series DSS
possessed ratios of shell thickness to radius which were slightly too great
to ensure completely elastic failures,

All models in each series were machined from 7075-T6 aluminum bar
stock with a nominal yield strength of 80,000 psi. Young's modulus E for
the material, as determined by optical strain-gage measurements, was
10.8 x 10® psi. A Poisson's ratio v of J.3 in the elastic range was
assumed. Tables 1-5 give the model dimensions for each series, and
Figure 1 shows representative ratios of [Es Et]VZ to E as a function of uni-
axial compressive stress for the material used in each model. The thick-

ness used in all strength calculations is listed as measured wall thickness

in these tables. Variations in measured thickness are also shown.

14
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{ Figure 1 - Representative Material Characteristics

SERIES S

i Series S consisted of four complete machined spheres, each having a
60-deg "hatch opening" requirad to permit machining of the inside contour.
The "hatch covers,'" which were inserted into the opening, and the area in

{ the shells adjacent to the opening were machined 10-percent thicker

15
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than the remairing portion of the spheres in an effort to minimize boundary
effects while discouraging failure in the cover itself (see Table 1).
Each of the four complete sphere models was machined in an identical

manner. Aiter roughing operations, the final contours of both the inside

and outside of the main body of the sphere were obtained by profiling.

The hatch covers were obtained by sawcutting disks from profiled hemi- 7
spherical shelis of the desired thickness, glueing the disks to a mating
adaptor plared in a lathe, and machining the edges of the disk to match
the opening in the sphere.

The wall thickness of each model was measured at numerous locations
by means of a Vidigage. Unfortunately, the initial departures from sphe-
ricity were not determined for the Series S models.

SERIES SS

Series SS consisted of 73 machined spherical segment models with
clamped edges; see Table 2. These models had included angles ranging
from 5 to 120 deg. The interior contours of Models SS-1 through S5-56
were machined by use of form tools. The interior coatours of Models
S5-57 through 73 were generated after erratic results were obtained from
the very thin models machined by form tools. In generating the irterior
contour of these models {which had very low ratios of wall thickness to

radius}, a tool specially designed to accurately generate inside spherical

* . - -
surfaces was used. The outside sphericai contour of each model was

* This same tool was used successfully [see Reference 12) to attain near-
perfect sphericity in hemispherical shells.
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Dimensions and Experimental Collapse
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Measured Measured Experimental Collapse Pressure -
Cap Thickness Tcat Setup
MODEL | wall Thickness | Variation in h_, in. Pexp (sce Figure 2)
h, in. h,in. < psi
+0,.004
5-1 0.193 0. 001 0.227 14,300 . - A
. +0.0010
S-2 0.121 -0.0015 0.141 8,500 A
+0,0007
S-3 0,049¢ -0.0013 0.056 3,000 A
S-4 0.0260 +0.0018 6.029 1,500 A
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obtained by supporting the inside contour by a mating mandrel and by

generating the outside surface using a lathe with a ball-turning attach-
ment, The edge of the spherical portion of each model was supported by
a very heavy ring. The spherical shell and supporting ring of each model
were machined as a unit.

Because each model was machined, a minimum of initial imperfections
was anticipated. The wall thicknes‘s of each model was measured at
numerous locations using a small support-ball and a dial gage calibrated
in 0.00002 in, The total variation in measured wall thickness was nor-
mally less than 1 percent of the shell thickness. Deviations from perfect
sphericity were not measured for Models SS-1 through §5-56. However,
the variation in local inside radii was measured for the generated shells
of Models SS-57 through SS-73 by pivoting a dial gage clamped to the
special tool for generating inside spherical surfaces. These measure-
ments indicated that the variation in local inside radii for each of these
17 shells after final machining was less than 0.0002 .in. and normally less
than 0, 0001 in.

SERIES DSS

Series DSS consisted of eight machined 300-deg spherical shell models
with clamped edges. Models DSS-1 through DSS-5 were machined by
profiling both the interior and exter or spherical surfaces. The interior
contours of Models DSS5-6 through DSS-8 were generated using the new,
specially designed tool which was also used for Models SS-57 through
§5-73. The exterior contours of Models DSS-6 through DSS-8 were

generated using a lathe with a ball-turning attachment. A heavy end ring
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was machined integral with each 300-deg shell segment. In additicn, a

solid plug was placed inside the ring to provide additional rigidity at the
edge of the spberical segments. These plugs had a nominal Class 4 fit
with the mating end rings (see Table 3).

The shell thickness of Models DSS-1 through DSS-5 was measared by
means of a Vidigage. The shell thickness of Models DSS-6 through DSS-8
No

was measured by using a small support-ball and a dial gage.

measurements of initial departures from sphericity were made on the

Series DSS models.

SERIES SSS

Series SSS {see Tables 4 and 5) consisted of 17 externally stiffened
machined hemispheres designed for an exploratory study of the effect of
stiffening systems on the collapse strength of relatively unstable spherical
shells. Models SSS-1 through S§S-9 had circumferential stiffeners only,
Models §SS-10 through SS$5-13 had meridional stiffeners only, and Models
S$5S-14 through SSS-17 had both circumferential and meridional stiffeners
covering a portion of the hemispheres considered adequate to represent a
complete sphere. The unstiffened portions of the hemispherical shells of
Models S§$S-14 through $55-17 were of sufficient thickness to force failure
to occur in the thinner region reinforced by the stiffeners (see Table 5).

The interior contours of each model were machined by use of a form

tool. The exterior contours of Models §55-1 through SS5-9 were

machined by use of a lathe with a ball-turning attachment. The exterior
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TABLE 3

2.000 IN. RADIUS

fe— 200 IN 1D,

/ CLASS 4 FIT

1 ] "E Fo-5/32 4.0IA.
LOS IN os8m .'J A ;
} I

Poemanaes2 30 IN. 0.D.

2.200IN.

Measured Measuyred | Experimental Collapse Pressure, Test Set
MODEL | Wall Thickness | Variation Pexp eat Seup
< X h (see Figure 2)
h, in. in h, in. psi

+0.C03

DSS-1 0.160 -0.002 11,100 A

DSS-2 0.165 +0,005 11,375 A
+0.0035

DSS-3 0.0705 -0.0015 4,720 A
+0.005

DSS-4 0.125 -0.002 8,400 A
+0.0015

DSS-5 0, @505 -0.0005 2,800 A
+0.0004

DSS-6 0.0471 -0.0012 2,925
+0.0006

DSS-7 0.0224 -0.0006 1,200 A
+0.0007

DSS5-8 0.0248 -0.0010 1,290 A
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TABLE 5

Dimensions and Experimental Collapse Pressures, Series SSS
Models SSS-14 and 5SS-15

m @ .
E
00383 14
! “\
hb| «
| 3 ] Foen
[oe—————— 1 §291IN =t l
t 24%0 N
! . Measured Thickness, in.
L 3 ELEMENT MODEL 5SS5-14+ MODEL §55-15¢
s Min — VT pe—
AA 0.0093 0.0083 0. 0096 0.0092
A 0.0082 0.0079 0.0083 0.¢078
B 0.008 0.0075 C. 0086 0.0082
0 (o] 0.0079 0.0076 0.0082 90076
23 D 0.007 0.0066 0.0080 0.0977
e < E 0. 0084 0.0070 0.0078 0.0076
[ 2 °. F 0.0075 0.0070 0,0080 0.0074
G ", 008 0.0073 0.0081 3.0076
H 0.007 0.0077 0.0084 3,007
1 0. 008 0.0084 C.coes 9.0079
J 0.0088 0.0036 0.0035% 0.0080
K 0.0088 0.0536 1.0084 0.007%
L 0.0090 0, 0089 0.0083 9.9979
M 0.0088 0.0085 9.0083 0.0079
N 0. 0090 0.0089 0.0085 0.0080
o) 0.0091 0.0088 0. 0082 . 0077
P 0.0091 0.00%9 0.0035 0.0079
Q 0.0088 0.0086 0.0033% 0.0077
R 0.008¢ 0.0084 0.0084 0. 8079
S 0.0085 0.0083 0.0084 0.0079
T 0. 0087 0.0086 0. 0087 0. 008¢
U V. 085 0. 0084 0. 0085 0.0079
v v, L0588 0.0087 0.0086 0.0082
w 0.un34 0.0084 Q.0082 9.0079
x . 40R8 0.0087 9. 0083 0.0078 <
XX AT 0.C10 0.014 0.011
* Experimental collapse preasures were 1325 psi for Model S55-14
and 1345 ps. for Model 555-15. The models buckled locally at
lower pressures. Test Setup B was employed (see Figure 2).
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the contour to the outside radius of the stifferiers and the thick-walled

portions of the shell. Then the material between stiffeners was removed

individually by indexing the model in relation to an electrode in an electric

discharge machine. Thus, the stiffeners and shell formed an integral

unit.

The wall thickness of each model was measured by using a small ball-

support and a dial gage. The initial departures from sphericity were not

measured in the Series SSS models.

TEST PROCEDURE

Each mocdel was tested under external hydrostatic pressure. Sche-~

matic sketches of the pressure tanks and test setups are shown in Figure

2. Pressure was applied in increments and e2ach new pressure level was

held at least 1 min. The final pressure increment was normally less

than 2 percent of the maximam pressure. Every effort was made to mini-

mize any pressure surge when applying load.

SERIES S

Maodels S-1, §-2, S-3, and S-4 were tested in a2 5-in.-diameter tank

shown in Test Setup A of Figure 2. No strain data or change in internal

volume measurements were recorded du~ing the tests.

SERIES SS

Models SS-1 through 35-10 and Model 55-42 were tested in a 2-in, -

diameter tank shown in Test Setup B of Figure 2. The models were
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SS-46 and Models SS-48 through SS-56 were tested in a short, 2-in. -

diameter tank shown in Test Setup C of Figure 2. No strain data were
recorded during the tests. However, the center deflection of these models

resulting from the applied hydrostatic load was recorded. Model SS-41,

Model SS-47, and Models 55-57 through S5-73 were also tested in the

short, 2-in. ~-diameter tank. However, the change in internal volume B
resulting from the applied load was recorded for these models rather tl;an
the center deflection. The test setup is shown in Figure 2d.
SERIES DSS

Models DS3-1 through D5S-8 were tested in the 5-in. -diameter tank
shown in Test Setup A of Figure 2. No change in internal volume
measurements was recorded. However, circumferential and meridional
strains in Models DSS-4, DSS-5, and DSS-7 were recorded using foil-
resistance strain gages. Gage locations are shown in Figure 3.
SERIES SSS .

Models S55-1 through S55-17 were tested in the 2-in. -diameter tank
shown in Test Setup B of Figure 2. No strain data or internal volume
measurements werc recorded during the tests. However, visual in-

spection of the inside contour of the model was ccnducted at all pressure

increments prior to collapse for Models SSS-14 through SSS-17.
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Figure 3 - Strain-Gage Locations for Series DSS,
Models DSS-4, DSS-5, and DSS-7

TEST RESULTS

Models SS-43 through SS5-56 were not collapsed or ruptured under
external pressure. The collapse pressures for all other models are
listed in Tables 1-5, Collapse pressure, defired as the maximum ex-
ternal pressure withstood by the respective model, was accompanied in
each case by a large dropoff in tank pressure. Many of the models
ruptured during collapse. Photographs of representative models after
coilapse are shown in Figure 4.
3LRIES S

Each model in Series S ruptured during collapse (see Figure 4a).
Failure of each model apparently initiated in the main body of the sphere.

28
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Figure 4 - Samples of Collapsed Models

Figure 4b - Series SS




Figure 4c - Series SSS

Due to the relatively large size of the test tank, no falloff in tank pressure
occurred prior to collapse of Series S Modzls.
SERIES SS

Models SS-1 through SS-42 and Models S5-57 through SS§-73 each col-
lapsed in a sudden, unmistakable manner. A slight falloff in tank pressure
was bserved prior to collapse of several of the more stable models.
When this falloff in pressure was ocbserved, the tank pressure was promptly
raizeu to the proper lev-l. Some of the models collapsed in a non-
symmetric mode, and others apparently collapsed in a symmetric mode.
The recorded changes in internal volume versus pressure for Model
55-41, Models SS-57 through SS-66, and Models SS-68 through SS-73 are
presented in Figure 5.

Models S5-43 through S5-56 were not collapsed nor did they rupture
under external pressure. Each model was subjected to pressures which

: caused the center deflection to be greater than the initial rise of the
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Figure 5 - Pressure versus Relative Change in Internal Volume
for Shallow Models of Series SS
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segment without buckling. The measured center deflection versus ex-
ternal pressure for each of these models except $5-47 is presented in
Figure 6. The measured change in internal volume versus external pres-
sure for Model 55-47 is shown in Figure 5,

SERIES DSS

Models DSS-1 through DS55-8 each ruptured during collapse (see

[

Figure 4a). Failure of Modals DSS-7 and DSS-8 initiated in the shell at

FATATR A
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Figure 6 - Pressure versus Center Deflection for Shallow Models

of Series SS
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the juncture with the heavy end ring. The other models failed in the shell

tam s

in areas away from the end ring. Due to the relative size of the test tank,
no falloff in tank pressure was observed prior to collapse of Series DSS N
models.

Measured elastic strain sensitivities, the initial slope of the pressure-

strain plot, are presented for Models DSS-4, DSS-£, and DSS-7 in Figure

7. Typical plots of pressure versus strain are shown in Figure 8.

SERIES SSS LR e

Models §55-1 through S55-13 failed in a very sudden marnner. No drop
in pressure prior to collapse was observed. Unfortunately, no visual
inspection of these models was made during the tests.

The ccllapse pressures of Models SS5-14 through S55-17, which are
listed in Table 5, represent the pressures at which overall collapse oc- -
curred. However, visual inspection of the interior contour of these
models indicated that excessive local deform_ati_?q of the shell between
stiffeners occurred during the test of each modei. This excessive defor-
mation was first observed at 1100, 1225, 775, and 500 psi for Models
SSS-14, S5S5-15, 555-16, and SSS-17, respectively. Photographs of the
progressive '"buckling' of Model 555-16 are presented in Figure 9.

The pressure load was applied to Model SS5-17 in four cycles. The
first cycle reached a maximum pressure of 525 psi, the second cycle,

575 psi; the third cycle, 625 psi; and the fina} cycle reached the collapse

pressure of 870 psi. When the pressure was ramoved at the end of the
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Figure 7 - Measured Strain Sensitivities for Series DSS,
Models DSS-~4, DSS-5, and DSS-7

first cycle, no permanent deformation was observed. Thus, the lobe
which appeared at 500 psi in the thinnest shell segment of Model SSS5-17
was essentially elastic at 525 psi, ‘After the second cycle, some perma-
nent deformation was observed at the location of the initial lobe. At the
maximum pressure of the third cycle, a second lobe was observed. When
the pressure was removed at the end of the third cycle, permanent defor-
mation was observed at the location of both of the first two lobes.

During
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Inside View of
Model in Tank; p=0

Outside View of
Mode! Before Test

p = 950 psi p = 1000 ps1

p = 1040 psi p = 1075 psi

Mode! After Collapse;

p=1118 ps1
Pelp = 1125
Figare 9 - Progressive Buckling of Model S55-16 o
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SERIES S

failure of this region.

* stiffeners had formed an inward lobe.

DISCUSSION

removed fror. the hatch {see Figure 4a).

) of complete machined spheres. Unfo

hatch. This is particularly true for Models S-1 and 5-3.

Failure of each of the four Series S models occurred in regions

In addition, the photographs of the collapsed

the final cycle, the number of lobes increased with increasing pressuré

It appears that increasing the

thickness of the hatch cover and adjacent area by 10 percent eliminated ‘

models indicate that the failure occurred in regions unaffected by the

Thus, the

rtunately, no strain data were re-

elastic behavior in way of the hatches.

TABLE 6

corded during the tests so no conclusions can be made regarding the

Summary of Geometric Parameters and Collaps.: Pressures
for Series S Models

until, immediately prior to collapse, nearly each segment of shell between

e

collapse strengths of the Series S models represent the collapse strengths

vopeL | & | T | v | A | en = | =
ir S-1 360 14,300 | 84,3CC ] 70,260 114,_150 5.05 1.01
S-2 360 8,500 | 76,500 29,530 | 8,720 3.40 0.98
S-3 360 3,600 62,300 5,355 | 3,400 1.58 0.88
S-4 360 1,500 58,300 1,495 { 1,465 1.62

TR e s mAne e
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Table 6 presents the average stresses of the Series S model at col-

lapse calculated using Equation [7] Each model collapsed at stress
levels equal to or greater than the proportional limit of the material.
Thus, each model collapsed by inelastic buckling.

Since the collapse of each model in Series S represented the inelastic
buckling of a complete machined sphere, the empirical Eq»ation [5] is
considered applicable in calculating their collapse strength. It may be
repeated that Equation [5] was suggested for use in calculating the ine-
lastic as well as elastic buckling strength of machined deep spherical
shells with ideal boundaries. 1 The experimental collapse pressures of
these models are compared in Table 6 and Figure 10 with the pressures
calculated by using Equation [5] . Table 6 alszo presents the empirical
alastic buckling pressure calculated by using Equation 2] and indicates
the relative stability of each model by presenting the ratio of the empiri-
cal elastic buckling pressure to the empirical inelastic buckling pressure.
In addition, Figu:e 10 compares these present results with the earlier

1112 he ab-

results of machined hemispheres with ideal boundaries.
scissa in Figuve 10 is the ratio of the empirical buckling pressure Pg to
P;. the classical small-deflection elastic buckling pressure according to
Equation [l] for v = 0.3; and the ordinate is the ratio of the experimental
buckling pressure Pexp top,.

The agreement Letweean the experimental resuits and the calculated

values obtained from Equation [5] is excellent for Models S-1, S-2, and

42
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p,= ELASTIC BUCKLING
PRESSURE, EQUATION (1]
pg= INELASTIC BUCKLING
PRESSURE, EQUATION (3]
EXPERIMENTAL BUCKLING
8P PRESSURE

0.2
0 EXPERIMENTAL COLLAPSE PRESSURE,
REFERENCES 1l AND 12
@ EXPERIMENTAL COLLAPSE PRESSURE,
SERIES §

0.1
NOTE: * indicotes models that failed at
stress below yield

03

0.6 0.7

Figure 10 - Experimental Buckling Data for Machined Deep Spherical
Shells with Ideal Boundaries
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S-4. However, agreement between experimental and calculated pressures

for Model S-3 was only fair; the experimental collapse pressure was about
12 percent below the calculated collapse pressure. Although this dis-

crepancy may not appear to be very large, it is considerably greater than

11

expected on the basis of earlier tests of machined shells”~ shown in

Figure 10, There is no obvious explanation for this discrepancy; initial
departures from sphericity may have lowered the experimental collapse
pressure,* or a local reduction in the strength may have been present in
the 7075-T6 aluminum bar stock.

Based on the results presented in Figure 10, Equation [5] adequately
predicts the buckling strength of deep spherical shells with ideal bounda-
ries machined to the accuracy represented by these models and the models
presented in Reference 11, Unfortunately, the initial departure from
sphericity was not measured for any of these shells, A guantitative
picture of the departures from sphericity can be obtained, however, by
studying the measured variations in thickness. Since none of the models
were supported on the inside while final machining the outside contour, it
seems unlikely that the initial departures from sphericity are any greater
than the measured variations in wall thickness. Thus it appears that the

spherical shells represented in Figure i0 had total initial departures from

sphericity which were, in general, less than5 percent of the shell thicknees,.

* The initial departu—res from sphericity were not measured for the
Series S models but are assumed to be small since the shells were ma-

chined.
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For design purposes, Equation [5] may be expected to adequately pre-

dict both the elastic and inelastic collapse strength of deep spherical
shells with ideal boundaries or "complete spherical shells' whose
contours have been accurately machined to ensure local variations in

13 over a critical

radii of less than 2 1/2 percent of the shell thickness
length. Accus:ately machined spherical shells may buckle elastically at
pressures approaching 43 percent greater than the pressures obtained
from Equation [5]. 12 For design purposes, however, it appears unreal-
istic to rely on this additional strength. 12 This is caused to a great
extent by the inability to measure the contours to the required degree of
accuracy since most practical shells which fail elastically have low ratios
of thickness to radius. Accurately machined shells which collapse in the
inelastic region may aiso fail at pressures higher than those calculated by
using Equation [5] As in the case of the shells which fail elastically,
however, it does not appear practical to rely oa any strength in addition to
that obtained from Equation [5] .

lf appreciable initial departures from sphericity are present, both the
elastic and inelastic collapse strength of deep spherical shells with ideal
boundaries will be lower than the pressure calculated by using Equation
{5]. For design purposes, Equation [5] represents an upper bound for
experimental collapse strength. If the initial departure from sphericity
over a critical length is greater than about 2 1/2 percent of the shell

thickness, the collapse strength will most likely be less than that
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calculated using Equation [5]. A semi-empirical design approach for

shells with initia] departures in aphericity is presented in Reference 13.
The effects of variations in thicknesa, adverse boundary conditions and
penetrations, and residual stresses are not considered in the development

of Equation {5].

Therefore, caution must be exercised when using this
design equation to ensure that none of these effects are present in the
strocture,
SERIES SS

The collapse pressures of those shallow spherical segment models )

which failed elastically {Models SS-25, SS-26, S5-33 through §5-36, and

§5-57 through S5-73) are compared in Figure 11 with test results recorded

7,26,30 23,24,25

in the literature?s and with nonlinear axisymmetric theory.
The ordinate is the ratio of the experimental collapse pressure p exp to P3,
the empirical elastic buckling pressure for machined deep spherical shells

with membrane boundaries. The abscissa is the nondimensional geo-

s x .
metric parameter 8 defined as

oL 0.91 L

3 2 a ) a
8 = _(1_,}] = = 2 forv=0.3 (8]
[4 v Rh v Rh ’

where La is the unsupported arc length of spherical shell.
Figure 11 also shows the results for four thin hemispherical shells

with rigid boundaries>> recently tested at the Model Basin. A summary

* It can be shown that 6 is identical to the parameter u used by
weinitschkeZ? and others,
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models is given in Table 7.

Summary of Geometric Parameters and Collapse Preasures
for Series SS Models

TABLE 7

of geometric parameters and collapse pressures for each of the Series SS

MopeL | ¢ Pexp | ‘ave P3 | Pg
deg psi psi psi psi

SS5-1 120 6.21 {14,175, 82,605 | 73,200 | 14,320

SS-2 120 6.22 {14,250 | 83,310 } 72,710 | 14,050

SS-3 120 8.51 | 8,500 | 74,815 | 31,290 8,950

SS5-4 120 7.84 | 8,175] 73,290 {29,910 8,710

S5-5 120 12.19 1 2,900| 60,790 5,290 3,370

SS-6 120 12.26 | 2,950 ! 62,430 5,180 3,350

SS8-7 120 17.06 | 1,100 44,640 1,395 1,395

S5S-8 120 17.15 1,09C | 44,665 1,365 1,365

S8S-9 60 3.09 {14,375 | 83,130 | 73,380 | 14,850

SS-10 60 3.11 {14,225 | 82,975 | 73,040 | 14,360

SS-11 60 3.90 | 8,200 72,695 | 30,600 8,920

S55-12 60 3.89 | 8,100 71,685 {30,700 8,900

55-13 60 6.02 | 2,925 | 59,885 5,540 3,480

55-14 60 6.05 | 2,875} 59,415 5,440 3,420

SS-15 60 8.54 1,070 | 43,420 1,390 1,390

55-16 60 8.54 1,080 ] 43,825 1,390 1,390

1§5- 17 / 45 2.32 118,400 |106,410 | 74,460 | 13,800

S55-18 45 2.33 118,200 {106,055 | 73,200 | 13,620

SS-19 45 2.90 ; 8,700 76,165 | 31,420 8,750

S8-20 45 2.91 8,320 | 73,365 | 30,940 8,690

S$S-21 45 4.50 | 2,480 | 50,305 5,650 3,450

SS5-22 45 4.52 | 2,545 51,860 5,600 3,390

§5-23 45 6.32 1,060} 42,005 1,460 1,460 0.73
SS-24 45 6. 35 1,055 | 42,200 1,435 1,435 0.74
S§-25 45 8.56 3551 25,545 439 4395 0.81
§5-26 45 9.04 290 | 23,315 352 352 0.82
S$5-27 30 1.86 |18,550 {150,090 | 36,960 9,700 1.91
SS-28 30 1.86 118,375 /149,290 | 36,650 9,610 1.91
§S5-29 30 1.94 /16,320 {143,500 {31,120 8,790 1.86
§5-30 30 1.94 {15,930 {140,850 | 30,760 8,700 1.83
SS5-31 30 3.03 1 2,725 ; 56,450 5,410 3,410 0.80
SS-32 30 3.03 { 2,700} 55,800 5,440 3,400 0.77
S$5-33 30 4.19 7351 28,720 1,500 1,500 0.49




TABLE 7 (Cont'd)

mopeL| ° 8 Pexp | ‘ave P3 FE
deg psi ps1 psi psi
5S-~34 30 4.25 685 | 27,530 1,420 1,420
§S-35 30 6.15 270 | 22,585 326 326
8§5-36 30 6.28 195 {17,180 294 294
$5-37 20 1.60 {14,375 189,860 [13,520 5,880
5S5~-38 20 1.61 |14,250 (189,340 |13,360 5,830
$5-39 20 2.13 | 4,350 | 99,835 4,390 3,100
§S-40 20 2.16 | 4,150 | 97,655 4,180 3,010
S$S-41 20 2.97 945 | 41,640 1,180 1,180
SS-~-42 20 2.93 950 | 41,020 1,230 1,230
55-43 10 | 1.30 | - - 2,000 | 1,890
S$S-44 10 1.31 - - 1,955 1,845
5S5-45 10 1.49 - - 1,175 1,175
$S5-46 10 | 1.48 | - - 1,190 |1,190
SS-47 10 1.64 - - 799 799
SE-48 10 1.66 - - 754 754
SS-49 5 1.37 - - 164 164
55-50 5 1.37 - - 165 165
SS-51 5 1.54 - - 103 103
§5-52 5 1.54 - - 103 103
SS5-53 5 1.79 - - 56.4 56.4
SS-54 5 1.84 - - 49,9 49.9
S§5-55 5 2.61 - - 17.1 17.1
S5-56 5 2.61 - - 17.1 17.1
55-57 16.5] 2.28 | 2,050 | 78,000 | 1,540 |1,540
55-58 18.5]| 2.73 | 1,080 | 47,000 | 1,175 |1,175
S5-59 20.0| 3.19 690 | 34,700 878 878
55-60 22.81 3.64 605 | 30,200 894 894
55-61 25.7] 4.10 580 | 29,100 883 883
§5-62 25.7}) 4.10 570 | 28,500 889 889
S§S-63 23.4| 4.45 290 | 21,700 398 398
55-64 25.7) 5.01 312 | 23,400 398 398
S§5-65 24.3] 5.46 193 119,700 215 215
S5-66 32.4] 7.28 225 | 23,000 215 215
S5-67 32.4] 7.51 218 | 23,300 199 199
55-68 28.1] 6.30 226 | 22,700 225 225
55-69 38.11 8.67 213 | 21,400 207 207
55-70 46 [10.0 257 | 24,150 257 257
55-71 54 |12.1 249 121,800 247 247
S8-72 60 13.5 246 {21,500 247 247
55-73 35.21 7.561 245 | 24,600 243 243
49
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The interior ccentours of all the machined models represented in

Figure 11, except Models 5S-57 through §5-73, were obtained by use of
the form tool. Erratic results were obtained from each of the models
obtained by forin tool except for those models recorded in Reference 35.
These erratic results were undoubtedly caused by initial departures from
sphericity. Unfortunately, no measurements were made of the initial
contours. It appears that the inside contours of these models, which were
very thin, were not perfectly spherical. Under the pressure of the tool,
however, these interior contours conformed to the spherical surface of the
support mandrel while the exterior contours were final machined. When
the machining operations were completed and the model was removed
from the support mandrel, these models apparently assumed the shape of
the inside contours. Thus, a uniform wall thickness was obtained although
initial departures from sphericity were present in the sheil after ma-
chining.

Like previous experiments recorded in the literature, the present
tests of models machined by use of a form tool showed a complete lack of
repeatability. However, the present results of models machined by
generating both inside and outside contours followed a very definite
1 pattern (see Figure 11). . Models S§5-57 through S5-73 each had near-
perfect sphericity; the variation in measured local inside radii for each
of these models was less than 0.0002 in. and normally 1ess than 0.0001 in,

Therefore, as in the case of the machined deep spherical shells with
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favorable boundaries, these results demonstrate the detrimental effects
of initial departure from sphericity on collapse strength. These results

also demonstrate that a small clamped segment can be weaker than a

L — - - e—

larger clamped segment, Although this phenomenon has been implied
by existing theoretical studies, it found no support in the earlier experi-
ments and several investigators have stated that it is physically not
29,36

feasible. An obvious implication of these results is that stiffening

systems may weaken rather than strengthen a spherical shell if placed at
critical spacings.

The empirical curve arbitrarily drawn through the experimental points
in Figure 11 has the same general shape as the theoretical curve of
Budiansky, 23 Weinif:schlce,z4 and Thurston?® for short segments associ-
ated with values of 8 less than about 5.5. However, as the shells become
longer or deeper, the empirical curve. departs from the theoretical curve.
Since the theoretical curve represents collapse pressures in the sym-
metric mode, it is reasonable to assume that the mode of collapse
becomes nonsymmetric in this region. Actually, the deformed surfaces
of the three longest generated segments after collapse were nonsym-
metric in nature, whereas the others were symmetric. This does not
necessarily mean that all of the 14 shallower segments failed in the
symmetric mode. Previous investigators4'3o have found that failures

which appear to be symmetric after collapse may have initiated in the

nonsymmetric mode.
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Weinitschke recently developed a theory for the nonsymmetric buckling

32 Although his theory is in fair agreement

of shallow spherical shells,
with early experiments, it completely disagrees with the present results.
Assuming that the same degree of accuracy was achieved in all of the 17
generated models, it appears that the correct theoretical nonsymmetric
buckling pressure for clamped segments would be critical for values of 6
greater than about 5.5 and would be equal to roughly 80 to 90 percent of
the classical buckling pressure for complete spheres.*

Models SS5-43 through SS-56 did not buckle ncr did they collapse or
rupture under external pressure {see Figures 5 and 6). Each of these
models had thickness-to-radius ratios which would ensure elastic buckling
if in the form of complete spheres. However, each shell was extremely
shallow with included angles of 5 to 10 deg whereas the smallest included
angle for the shells that did buckle was 16 1/2 deg. Most of these shells
also had extremely small values of 8. Either of these factors might pre-
clude buckling. The preliminary analysis on these models however, is
not sufficient to reach any definite conclusions.

The test results of those models which failed at stress levels above the
proportional limit of the material dp‘ are presented in Figure 12 as a

function of the geometric parameter 3. The results ars quite consistent

when plotted in contour of ratios oi P3 to pg. For those deep segments

* In discussing Weinitschke's papv.er3Z at the recent NASA Symposium on
Instability of Shell Structures, Budiansky indicated that his early theo-
retical results follow this same general pattern.

-
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which had ratios of P3 to Pg of 1 but had membrane stresses of collapae

) of about 70 percent of the proportional limit, the observed col-

(

lapse strength was about 20 percent less than would be expected for a

Javg

near-perfect complete sphere or a deep machined sphere with ideal
boundaries. As the ratio of P3 to Pg increased (that is, as the shell
b.came more stable), the effects of clamping the edges diminished for all
except the very shallow, or short, shells.

Regardless of the ratio of P; to pE, the buckling strength of all
segments increased rapidly for descending values of 8 below abuut 2.2 to
2.5. Therefore, it is apparent that stiffeners must be placed at relatively
close intervals in order to realize an increase in either elastic or ine-
lastic buckling strength. Placing stiffeners at spacings greater than the
arc length corresponding to 2 8 of about 2.5 will not increase the local
bnckling strength of the shell and may possibly weaken it.

Another, more abstract conclusion obtained from these tests is related
to initial departures from sphericity or local 'flat spots." If a spherical
shell contains a flat spot covering an arc length associated with 2 8 of
about 2.2 or greater, the collapse strength of this shell would appear to
be relatively independent of the nominal radius of the shell. Based on the
local curvature of the "flat spot!" rather than on the nominal curvature
which is commmonly used, a new upper bound may be determined for the
collapse strength of an initially imperfect spherical shell. This obser-

vation is the basis of an analysis developed in Reference 13 which
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adequately predicts both the elastic and inelastic strength of 36 machined

models with local flat spots covering a relatively wide range of 8.

A stress analysis should be conducted on the Series SS shells as well -
as on the other sheils reported herein to more fully understand their be-
havior. It is anticipated that this will be undertaken in the near future.
SERIES DSS

Failure of each of th~ Series ©55 micdels except the two thinnest
models (DSS-7 and DSS-8) occurred away from the boundary (see Figure
4). Thus, the boundary conditions did not have a severe effect on col-
lapse. This conclusion is iupplemented by the strain data Presented in
Figures 7 and 8. The strain sensitivities plotted in Figure 7 show that
the edge effects did not cause excessive strains at the shell-boundary
ring juncture. It appears that these relatively low strains were primarily
the result of the taper at the juncture. Figure 8 shows that during the test
there was a change in the slope of the pressure-strain plots of gages
adjacent to the boundary ring. This indicates that the solid plug placed
inside the opening was not fitted sufficiently tight to support the boundary
ring during the early stages oi the loading cycle. This also may have
reduced the boundary effects.

Since the boundary conditions of the Series DSS models were not
severe, the empirical formula for near-perfect spheres should be appli-
cable in calculating their collapse strength. Table 8 compares the

experimental collapse pressures with the collapse pressures calculated

(¥1]
(V]

PN

|
|

w‘l
R
g\

AL ol s

 MLED
1 ::
R

L3
'




lest

\

NHULERINN ot -,

"ﬂggm

TABLE 8

Summary of Geometric Parameters and Collapse Pressures
for Series DSS Models

¢ Pexp | ‘avg P3 PE

P3
MODEL deg psi psi psi psi PE P

DSS-1 300 { 17.20 {11,100 | 74,925 | 49,780 | 10,800 | 4.61 | 1,03

DSS-2 300 | 16.84 {11,375 | 74,630 | 52,690 | 11,660 { 4.52 | 0.98

DSS-3 300 | 25.57 | 4,720 } 69,310 | 10,520 4,810 | 2.19] 0.98

DSS-4 300 | 19.38 | 8,400 | 73,565 | 31,390 8,420 | 3.734 1.00

DSS-5 300 | 30.211{ 2,800 ; 57,555 5,500 3,250 | 1.69] 0.86

DSS-6 300 | 30.84 ] 2,925 | 64,305 4,800 2,975 | 1.61 ] 0.98

DSS-7 300 § 44.95 ] 1,200 | 54,470 1,113 1,070 § 1.04 ] 1.12

DS5-8 300 | 42.73 ) 1,290 § 52,985 1,360 1,330 | 1.02} 0.97

by using the empirical formula. Good agreement was obtained for each
model except DSS-5 and DSS-7 which were relatively unstable shells.
Model DSS-5 collapsed at a pressure 14 percent less than the calculated
ssure, and Model DSS-7 collapsed at a pressure 12 percent above the
caicuiaied pressure. As in the case of Model S-3, the relatively low col-
lapse pressure of Model DSS-5 may most likely be attributed to the
prasence of local departures from sphericity or to a local reduction in the
strength of the 7075-T6 aluminum bar stock. The nigh collapse pressure
of Model DSS-7 is rather surprising in view of the fact that its strength
was most likcly reduced at least 2 small amount by the edge condition.
Thus, it is apparent that the sphericity of Model DSS-7 was extremely
good. Unfortunately, nuo measurements were made of its initial contour.
However, this high collapse pressure of Model DSS-7 once again lends sup-

port to the validity of the classical theory when applied to periect spheres.
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SERIES SSS

The experimental collapse pressures of the Series SSS stiffened shells
are compared in Table 9 with the estimated collapse strength of the shells,
neglecting the stiffeners and the estimated collapse strength of equivalent
unstiffened shzlls of the same weight. Although installing stiffeners at
sufficiently close intervals increased the collapse strength of the spheri-
cal shells, in no case was the collapse strength of the stiffened shell as
great as would be expected for a machined unstiffeaed shell of the same
weight.

T ese tests were rather exploratory in nature and they do not by any
et 0 onstrate that effective stiffening systems cannot be developed.
TL- - .. demcnstrate, however, that certain types of stiffening systems
will not be effective. In so doing, these Series SSS tests support the
conclusion drawn from the Series SS tests; i.e., stiffeners must be
placed at relativeiy close intervals in order to i.crease the collapse
strength of a spherical shell Each model having a;x unsuvoported arc
length corresponding to values considerably in excess of 2.2 collapsed at
a pressure below that calculated for the unstiffened shell. These models
were SS5S-1, SSS-2, and SSS-10 through §5S-13. The remaining models
had relatively shcrt unsupported arc lengths. Of these, the circumfer-
entially stiffened Models SSS-3 through SS$5-9 had no increase in strength
or had only a marginal increase in strength over that predicted for the

respective shelis, neglectiag the stiffeners. However, the appearance of
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these models after collapse suggests that their strength was alfected by

their boundary conditions. The models with both circumferential and
mevridional stiffeners {(Models S5S5-14 through SSS-17) were considerabiy
stronger than predicted for the unstiffened portion only.

The benefits of stiffening in both the circumferential and meridional
direction or in the circurnferential direction only appear worthy of
further investigation. This is particularly true for welded shells where
the efficiency of unstiffened shells is considerably less than that cf
machined, unstiffened shells. Howvever, due to the inefficient distribution
of the material, the use of meridional stiffeners only shows little promise
of producing successful results,

The main obstacle in achieving efficient stiffening systems stems from
the resulting stress ficld which they produce. The stiffener resists load
in its axial direction only whereas the hydrostatic loading causes,
essentially, a uniform biaxial load to occur in an unstiffened spherical
shell. Since the stiffener offers no resistance to load in the plane normal
to the stiffener, it can be no more than half as efficient as the shell
material if buckling is neglected. Thus if strain hardening and three-
dimensional stress effects are neglected, the maximum pressure to be
achieved from a spherical shell with stiffeners in one direction only is
that pressure which, according to Equation [7], causesy the stresses to
reach the yield point of the material. For spherical shells uriformly

stiffened in two directions, the maximum pressure to be achieved is that
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pressure which causes the average stresses in the stiffener-shell

combination to reach the yield point of the material, This pressure may
be determined by substituting an equivalent thickness into Equation [7].
This equivalent thickness is that of the shell and one stiffener only. The
stiffeners accounted for 50 to 60 percent of the total material of Models
SSS-14 through SSS5-17. Since each of these models failed at stress
levels beyond the pronortional limit, it i8 not surprising that their col-
lapse pressure was on the crder of 30 percent less than that calculated
for the unstiffiened sphere of the same weight.

A stifiened spherical shell may buckle in various modes, depending on
the stiffening system. Placing stifferners in a single direction at rela-
tively large intervals will have no strengthening effect on a spherical
shell and may possibly have a slight weakening effect. A shell stiffened
in this manner will most likely fail by the formation of a small inward
lobe similar to the complete sphere. On the surface, it appears that the
buckling of spherical shells with closely spaced stiffeners in only one
direction is analogous to the axisymmetric buckling of short cylinders. 37
The buckling of those shells stiffened in two directions appea;.rs to be
closely associated with the strength of spherical caps as demonstrated in
Figures 11 and 12. Ir addition, however, the shell-stiffener combination
of both types of stiffening systems may buckle, particularly if relatively '
small stifieners are placed at extremely close intervals. It appears that

a sandwich spherical shell wculd effectively resist this overall mode of
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collapse and, thus, this shell is worthy of investigation. However,

serious problems in fabrication and "inservice! inspection of sandwich
spheres are visualized.

At the present time no theories are available for calculating the
buckling strength or the stress distribution of stiffened spherical shells.
It is apparent, therefore, that considerable study, both theoretical and
experimental, is required before rational designs of efficient stiffened
spheres may be achieved.

CONCLUSIONS

1. For design purposes, Equation[ 5] adequately predicts both the
elastic and inelastic strength of initially stress-free complete sgheres
or of deep spheres with ideal boundaries whose local variations in radii
are less than about 2 1/2 percent of the shell thickness.

2. Whereas previous experimenats on shallow spherical shells with
clamped edges recorded in the literature show a complete lack of
repeatability, the present models follow a very definite pattern. However,
no thecry presently available in the literature may be used to adequately
predict their behavior throughout the rarge investigated.

3. A spherical segment with an arc length associated with a value of
the geometric parameter 8 of about 2.2 or greater is not st;engthened by
its boundary. Thus, stiffeners must be placed at very close intervals in
order to increase the strength of spherical shells. Similarly, the strength

of an initiallvy imperiect sphere is mainly dependent on the local curvature
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over a "flat spot' of critical length ratiier than on the nominal curvature.

4. A small clamped spherical segment :nay be weaker than a larger
clamped segment. Thus, stiffening systems may weaken rather than
strengthen a sphérica.l shell if placed at critical spacings.

5. Installing stiffeners in spherical shells at close intervals
increases their experimental collapse strength.

6. In no case was the experimental collapse strength of a stiffened
spherical shell as great as would be expected for a machined unstiffened
shell of the same weight., These tests do not demonstrate, however, that
effective stiffening systems cannot be developed.
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